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Probabilistic Approach to Computational Algorithms for Pinding Stationary

Distributions of Markov Chains.

Michael .J. Taksar and Winfried K. Grassmann

Abstract

A number of important theorems arising in connection with Gaussian elimination

are derived, using semi-regenerative analysis. The implications of these

theorems to find steady-state solutions of Markov chains are analysed. The

results obtained in this way are then applied to quasi birth-death processes.

Introduction

Originally, the determination of stationary distributions in Markov chains

was done, using completely algebraic arguments. Unfortunately, algebraic

arguments often do not take advantage of the particular structure of stochastic

-. matrices which form the coefficients of the equilibrium equations. Recently, a

new trend emerged which looks into the probabilistic interpretation of the

algorithms for solving equilibrium equations. The objective of this paper is to

further this trend by deriving computational algorithms from purely

probabilistic arguments. The arguments employed in this paper are based on

the semi-regenerative structure of Markov chains. This approach gives better

insights into formal manipulations of equilibrium equations and provides -
probabilistic interpretations of the coefficients obtained at each step of such

manipulations. This allows one in turn to make connections and draw

conclusions that would not be obvious otherwise. In particular, we derives a

number of theorems leading to a better understanding of Gaussian eliminatian
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a semi-regenerative processes. These theorems allow one to derive relation hips

between certain matrix-geometric solutions and Gaussian elimination Neuts

(19811, Gaver et al. (1984).

From a Markov chain {Yn, n=O,1,... one can obtain a semi-regenerative

process by recording the state of the chain only while it visits points of a

given subset D of the state space of Yn. Specifically, let Tn, n = 1,2,..., be the

time of the nth visit to D and let Xn be the positicn of the chain at Tn. The

process ((Xn,Tn), n=l,2,..) is then a Markov renewal process (see Cinlar [1975]

Chapter 10), (Xn, n=1,2,...) is a semi-regenerative process and the Tn are the

semi-regenerative epochs of the Markov renewal process. Thus, if we consider

= YTn_ YTnI+I, - - - YTn I

then the conditional distribution of the sequence (AnAn+l,...), given the past

of the process up to Tn_1 , depends only on Xn_j, and all An are conditionally

independent, given (X.,T.). The analysis of the behaviour of Y. from one

semi-regenerative epoch to another produces the main relation between

steady-state probabilities that is used for developing the algorithm. For

simplicity, we assume that the Markov chain (Yn, n=0,1,..) is irreducible and

aperiodic, and that the state space of Y. is E=(0,1,2,...} . Such a Markov chain

reaches steady state (see Cinlar [1975], Chapter 8), a fact that is expressed by

the following relation

Yn -" Y.

Alternatively, one can write

Pi[Yn = D) -4 pj , J=01,.,

Where pj is the distribution of Y., and Pi(.) P( • IY0 ii. The notation Ei

must be understood in a similar way.

'e I-a r~--~ ..
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Let

D = (O,1,2,...,d-l}

and

T = rin( m>O. YmD}. (1)

Let li(Yn) be the indicator function for Yn=i, and let

T
vij(d) = E;( I lj(Y m ) Ej#(j{: m < T and Ym = J }" (2)

m=0

The symbol 9 denotes the cardinality of a set. The expresion, #{m: m > T and

Ym = j ), in particular, is the number of times m meets the condition in

question, and the quantity vii(d) becomes the expected number of visits to

state j prior to the exit from E-D, given one starts from the point i. The vii(d)

are related to the pi according to the following theorem:

Theorem 1: Let (poPl,...) be the steady-state distribution of the Markov chain

Yn. Then

d-l
Pj = - vi(d) Pi • (3)

311

Proof: Let

TI T

Tn+I = mint m>Tn: Ym a D }

= (4)Xn = YTn"(4

From these definitions, it follows that Tn is a stopping time, and that Xn can

only assume the values O,l...,d-l. As a consequence, the strong Markov

property applies, which means that Xn is a Markov chain with the state space

D (Ol,...,d-l). This chain i irreducible because the original chain Yn is
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irreducible. Let vi, I O,1,...,d-1 be the unique invariant distribution for Yn-

Let m(i) = El(T} be the times between regeneration, and let

Kn(i,j) = Pl(Xn = j, T>n)

According to Qinlar [1975], Chapter 10, Theorem (6.12)

Illr Pl( Yn J :vk Kn(k,) / E m(k)j (5)
n'm kaD n=O keD

We must mention Cinlar assumes that the times between the Markov-renewals

have a continuous, aperiodic distribution. Since we are dealing with a

discrete-time Markov renewal process, the distributions in question have in

fact a periodicity of 1. However, the proof for the discrete case is basically

identical to its continous counterpart. The sum of the Kn(k,j) in (5) can be

found as

I Km(i) Pi Ym J, T >) m
m=O m=O

- Z Elj(Ym) 1T>m ) " V(d). (6)
m=0

Since Pi( Yn - I converges to pj, one finds from (5) and (6)

d d
pj = Y i(d) vi / E m(k)Lk. (7)

i=O k=O

If ij a D, vij(d) is I If i=j, and zero otherwise. In this case, (6) becomes

d
pi = vj / r m(k)L'k, (8)

k=O

a relation that Is also well known from semi-Markov processes. From (7) and

(8), one easily obtains (3), which proves the theorem. (3) can also be proven in

different ways (Miller [1984], Grassmann et al. [19851), but then, the connec-

! .-'.\.v.;
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tion to semi-regenerative theory is lost.

Later on, we need to relate the vlj(k) for different values of i,j,k. Such

relationships can be obtained from the following theorem.

Theorem 2: Let vij(k) be given by (2), and let Pij be the transition

probabilities of the Markov chain Yn. Then for k ) d

k-I
vii(d) = vij(k) + E vi,(d) vvj(k) (9)

v=d

Proof: Let D consist of the first d points form 0 to d-1, and let T be defined

by (1). Similarly, let K consist of the first k points from 0 to k-i, and let

min(m>0: Ym&K) (10)

Since the first visit to K occurs prior to the first visit to D, -rT, and one has

vij(d) Ei(6(m>O: Ym=j, m<T) )

= Bi(#(m: Ym=j, 0<r(r ) + Ei((m: Ym=j, r4cm<T)

vii(k) + Ei(#(m: Ym=j, rm<T) ). (01).

We now consider the successive visits to K-D. Thus, let f (n) the nth visit to

K-D, that is,

((1) min(m: m>0, Ym a K-D)

t(n) = rin(m: m> n-1), Yn a K-D).

The f(n) are obviously stopping times, and ((n) 4 . as n 4 . Moreover,

r = min( m>O: Ym*K ) C min( re>O: Ym&K-D } =(1). (11)

In (10), the equality holds if the first visit to K is also a visit to K-D. In a

similar way, one finds from (1) and (11), provided K2D

T. (12)

(12) holds as an equalitiy if the first visit to D coincides with the first visit to

K. In this case, the second term of (11) is zero. If, on the other hand, r<T,
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the first visit to K precedes the first visit to D, that is, the first visit to K is

a visit to K-D. Hence,

and one finds under this condition

Ei( (m: Ym=j, r~m<T) I

Ei Y- lj(Ym ) lm<T 
I

m=f (1)

" Bj[ E I lj(Ym) lm(T I
Y~l n~t(v')

* e(v+lk-I
" Et( I E lj(Ym) lm(T E ln(Yj(l)) I

k-i *(vl- ) k-

Si( I I lj(Y,) I,<T 1,(yt(1)) ] ] (13)
ni d v1 = (v)

We now condition on Yf(v) = u. Because of the strong Markov property for the

stopping time on f(v), one has

Ej I E lj(Ym) lm<T ln(Yf(v)) I Y((v) u
t (V)-I

" El E lj(Ym) lm<T ln(YO) I YO = u I

M 

O

We now use (14) to write (13) an

-v -. - - - .-7
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sit E I l m(Yt(v)) lt(v)<T Vnj(k)

n-d v - m-f(v)

k-I -
sit I Em<T ln(Ym) vnj(k)J

k-i T-1

I Si I I vni(k) In(Ym) I
n=d m=O

iVni (k) vin (d).

n--d

In summary

Ei S(m: Ym-J, -rm<T) I dvin(d)vnj(k) (15)

If we compare (15) with (11),.we obtain (3).

Corollary* For i<d

Vlj(d) -- vi ( d + l ) + vid (d) Vdj(d+1). (16)

A similar result was obtained in Grassmann et al [1983].

Applications

The theorems above are particularly useful if the states can be partitioned

into groups of states KoKIK 2 ,..., called levels. Level 0 consists of state 0 only,

and level n, n=0,1,2,... consists of the states kn_1 to kn-1. For consistency, k0

is defined as 0. If d in equation (3) is replaced by kd, one has

1
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kd-1 (kd) d-1 (kd)
pj I vii = I I pi vii JsKd (17)

=0 n=O ilK n

We now define the following vectors and matrices:

qn = I Pj, j8Kn I

and

(kd) (18)
Und = I vii ,icKn, jKd (

Using these symbols, (17) becomes

d-1

qd qn Und (19)
n-O

In many applications, one has the following: For all d within a certain range,

say dNc, level d cannot be reached from level n, n(d-1. In other words, level

d-1 cannot be skipped. Such levels will be called non-skippable. If d is

non-skippable, Ud_2, Ud-3,... are all zero, because all .vij(kd) vanish. In this

case, (19) beccines

qd = qd-1 Ud-l,d (2

Suppose now that for n within the range extending from a certain lower limit e

up to o, all levels have the following properties:

1) Level d in non-skippable

2) kd+1 = kd + a, where a is a constant

3) [pi j+i, ieKd] -- [pi j+i, icfKg], PO0, g-ld.

It is easv to verify that under these conditions, Ud.l,d = Ugl,g = U, god.

From (20). one concludes that under these conditions, qd is matrix-geometric

(Wallace (1969], Neuts (1981], Gaver et al. (1984]), that is

qd+r = qd Ur. (21)

- ~ -'
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Thus, using the vij(d) allows one to derive a number of results. Moreover,

a, the vii(d) can be found in many cases of practical importance. Grassmann et &I

[1985J showed how to find the vij(i), using a modification of Gaussian

elimination. Once the vii(J) are determined, one can obtain the vii(d), d<j,

either using (9) or (16). Moreover, the vii(d) can be grouped into matrices

according to equation (18), which allows one to set up interesting relations for

quasi birth-death processes, in particular equations (20) and (21).
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